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Abstract. In the context of a modified thermodynamic perturbation theory within the grand
canonical ensemble, by the use of the thermodynamic fluctuation method, a number of new
analytical approximations for calculations of the grand thermodynamic potential as well as of
the short-range order parameters and their Fourier transform in disordered binary alloys with a
Bravais crystal lattice are elaborated. An alloy of an arbitrary composition is considered in the
framework of the lattice gas model with pair atomic interactions of arbitrary effective radius
of action. The inverse effective number of atoms interacting with one fixed atom and inverse
temperature as well as the concentration of the impurity component are used as small parameters
of expansion. The developed approach may be also followed in studies of magnetics within the
framework of the Ising model, and of fluids and amorphous materials within the lattice gas
model as well as in investigations of low-dimensional lattice systems.

1. Introduction

Currently, there exist a number of analytical approaches for calculation of the short-range
order (SRO) parameters in disordered (i.e. without a long-range order) binary alloys (for
an overview see [1–6]). One comparatively simple in a practical implementation but
methodologically consistent approach is based on the joint application of the thermodynamic
perturbation theory and the fluctuation method [1–5, 7–10]. The important advantage of such
an approach is the potential of taking into account the long-range contributions to atomic
interactions without the complication of a consideration. Such potential is topical for a
statistical–thermodynamic description of actual alloys, because the long-range character of
atomic interactions in alloys was clearly demonstrated through the direct calculations of the
distance dependencies of the energies of these interactions on the basis of the experimental
data on diffuse scattering intensity [11–17]. In the framework of the electronic theory, the
microscopic nature and the universal character of the long-range interatomic forces were
revealed [18–23]. Besides, it was shown (see e.g. [2–5]) that the indirect elastic (strain-
induced) interactions of the impurity atoms (caused by the relaxation of the elastic distortion
fields induced by such atoms) also have long-range character.

To date, the essential disadvantage of the joint application of the thermodynamic
perturbation theory and the fluctuation method in alloy studies lies in taking account of
only thefinite (as a rule small) number of terms in a perturbation series under the choice of
the inverse temperature as a small parameter of expansion, whereas the convergence of this
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series is relatively weak. At the same time, considerable progress in the development of
the thermodynamic perturbation theory within the Ising model was achieved in the works
of Brout [24–27], where the possibility of analytical summation of the infinite number of
terms that mainly contribute to the corresponding series was demonstrated in the realistic
case of long-range atomic interactions. In this case, the inverse effective number of atoms
interacting with one fixed atom was chosen as a small parameter of expansion. However,
such an approach has not found the deserved applications in alloy studies, and no more than
two corresponding works [28, 29] are familiar to us.

Besides, thus far, the thermodynamic perturbation theory was applied in alloy studies
within the framework of the canonical ensemble only. At the same time, it is known [21, 30]
that, within the approximate methods (unlike the rigorous ones), the step from the canonical
ensemble to the grand canonical one may ensure the considerable rise of the numerical
accuracy of calculations of thermodynamic characteristics. Moreover, as a result of such a
step, one may expect the rise of the accuracy of the thermodynamic fluctuation method itself,
because, within the grand canonical ensemble, the fluctuations of the occupation probabilities
for the different sites of an alloy crystal lattice are not constrained by the requirement of the
constancy of the total number of alloy atoms and, hence, these fluctuations are absolutely
independent of one another. Thus, within the grand canonical ensemble, the necessary
condition of the usability of the thermodynamic fluctuation method [31] is satisfied in
contrast to the case of the canonical ensemble, when the above-mentioned requirement
takes place.

The aim of the present study is to work out new analytical methods of calculation of the
SRO parameters in disordered binary alloys with a Bravais crystal lattice by means of the
joint application of the thermodynamic fluctuation method and perturbation theory within
the grand canonical ensemble, adopting the inverse effective number of atoms interacting
with one fixed atom and the inverse temperature as well as the concentration of the impurity
atoms as small parameters of expansion.

In section 2, the expressions for the grand partition function and for the grand
thermodynamic potential of an alloy are obtained within the framework of the lattice gas
model.

In section 3 and the appendix, the traditional cumulant expansion in the thermodynamic
perturbation theory is generalized to the case of the grand canonical ensemble and the
corresponding diagram technique is developed.

In sections 4 and 5, the expressions for the grand thermodynamic potential within two
approximations corresponding to taking account of the terms in the cumulant expansion
that are proportional to the zeroth and first powers of the inverse effective number of
atoms interacting with one fixed atom are obtained. In sections 6, 7 and 8, within such
approximations both the method of differentiation with respect to the potential and the
thermodynamic fluctuation method are used to obtain expressions for the SRO parameters.
The comparative qualitative analysis of the accuracy of these two methods is performed.

In section 9, the expressions for the grand thermodynamic potential and for the SRO
parameters are obtained within three high-temperature approximations corresponding to
taking account of the terms in the cumulant expansion that are proportional to the zeroth,
first and second powers of the inverse temperature.

In section 10, the expressions for the grand thermodynamic potential and for the SRO
parameters are obtained within the approximation that corresponds to taking account of all
chain-type diagrams (both reducible and irreducible) whose contribution in the cumulant
expansion is proportional to the zeroth power of the inverse effective number of atoms
interacting with one fixed atom.
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In section 11, the expressions for the grand thermodynamic potential and for the SRO
parameters are obtained within the low-concentration approximation.

In section 12, the conclusions and perspectives are presented.

2. Grand thermodynamic potential

In the general case, within the framework of the lattice gas model, the HamiltonianH of a
two-component A–B alloy with a Bravais crystal lattice and with atomic interactions of less
than or equal to second order and arbitrary radius of action can be written in the following
form [32, 33]

H = Nν0+8
∑
R

CR + 1/2
∑
R1,R2

VR1−R2CR1CR2 (2.1)

whereν0 is the energy per site of an ‘alloy’ in which allN sites are occupied by B-type
atoms,8 is the potential of the injection of an A-type atom in a crystal lattice site,VR1−R2

is the (pair) mixing potential,

CR =
{

1 if the siteR is occupied by an A-type atom

0 otherwise
(2.2)

and the summations on the vectorsR, R1 andR2 are carried out over allN crystal lattice
sites. It should be emphasized that the expression (2.1) is valid only under the assumption
that all crystal lattice sites are symmetry equivalent, because only in this case is the injection
potential independent ofR and the mixing potential is a function ofR1−R2 [32, 33]. Such
a situation takes place in the disordered state of an alloy, which is just under investigation
in the present study.

The expression (2.1) can be presented as follows

H = Nν0+ 1/2
∑
R1,R2

(VR1−R2 + 28δR1,R2)CR1CR2 (2.3)

where δR1,R2 is the Kronecker delta. Accordingly, the grand partition function4 of the
system in question has the following form

4 = 40

∑
{CR}

exp

[
−(2kBT )

−1
∑
R1,R2

WR1−R2CR1CR2

]
(2.4)

where

40 = exp[−N(ν0− µB)/(kBT )] (2.5)

WR1−R2 = VR1−R2 + µδR1,R2 (2.6)

µ = 2(8− µA + µB) (2.7)

µA and µB are the chemical potentials of A- and B-type atoms, respectively,T is the
absolute temperature,kB is the Boltzmann constant and the summation on{CR} is carried
over all possible atomic configurations.

Note that the expression (2.4) for the grand partition function can be converted into
the expression for thecanonical partition function by settingµ = 0 (under neglect of the
configuration-independent multiplier). This allows us, if needs be, to make the step from
the grand canonical ensemble to the canonical one in the expressions for the configurational
statistical–thermodynamic characteristics of alloy by settingµ = 0.

In the present section, we shall assume the presence of a long-range order (LRO) in the
alloy with the purpose of further use of the thermodynamic fluctuation method, in which
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the SRO is considered as fluctuations of the equilibrium LRO. In the following sections,
after the application of the fluctuation method, the LRO parameters will be put equal to
zero, according to the aim of the present paper to investigate just the disordered state of the
alloy.

Thus, let us replace the summation on{CR} in the partition function (2.4) by the
summation on{CR}LRO over all states with some given values of the LRO parameters
[1, 3, 4, 24–27, 34, 35]. The expression for the corresponding grand thermodynamic potential
� can be presented as follows

� = −kBT ln4 = �0− kBT ln10 +1� (2.8)

where

�0 = −kBT ln40 = N(ν0− µB) (2.9)

1� = −kBT ln

〈
exp

[
−(2kBT )

−1
∑
R1,R2

WR1−R2CR1CR2

]〉
(2.10)

10 =
∑
{CR}LRO

1. (2.11)

10 is the number of configurations corresponding to a state with a given LRO, and (see
e.g. [3, 4])

ln10 = −
∑
R

[PR lnPR + (1− PR) ln(1− PR)] (2.12)

where the value

PR = 〈CR〉 (2.13)

is equal to the probability of finding an A-type atom at the siteR. In (2.10) and below,
〈. . .〉 means the statistical average over all states with given values of the LRO parameters:

〈. . .〉 = 10−1
∑
{CR}LRO

. . . . (2.14)

Notice that the values of the chemical potentialsµA andµB and, therefore (see (2.6),
(2.7)), the value ofµ must satisfy the general thermodynamic relationships [31]

〈NA〉 = −(∂�/∂µA)T 〈NB〉 = −(∂�/∂µB)T (2.15)

whereNA andNB are the numbers of atoms of types A and B, respectively.

3. Cumulant expansion

According to the general approach of the thermodynamic perturbation theory [3, 4, 24–
27, 31, 34, 35], we expand the expression (2.10) in a cumulant series in powers of the
inverse temperature

1� = −kBT ln

〈
exp

(
− X

kBT

)〉
= −kBT

∞∑
n=1

1

n!

Mn(X)

(−kBT )n
(3.1)

where

X = 1/2
∑
R1,R2

WR1−R2CR1CR2 (3.2)
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andMn(X) is the cumulant of thenth order determined as follows

Mn(X) = −n!
∞∑

m1,m2,...,mn=0(
n∑
i=1
imi=n

)
( n∑
i=1

mi − 1

)
!
n∏
j=1

[
1

mj !

(
−〈X

j 〉
j !

)mj]
. (3.3)

In particular, from (3.3) one can obtain

M1(X) = 〈X〉
M2(X) = 〈X2〉 − 〈X〉2
M3(X) = 〈X3〉 − 3〈X2〉〈X〉 + 2〈X〉3
M4(X) = 〈X4〉 − 4〈X3〉〈X〉 − 3〈X2〉2+ 12〈X2〉〈X〉2− 6〈X〉4.

(3.4)

In the work of Brout [24], it was shown that one can assign a linked irreducible diagram
consisting of vertices linked by lines to each term that mainly contributes to the series (3.1).
A linked diagram is defined as not consisting of several isolated parts, and an irreducible
diagram as one that may not be transformed into an unlinked diagram by cutting at some
vertex. To obtain the analytical expression corresponding to a given diagram, it is necessary
[24–27, 36]:

(1) to match up the multiplierWRi−Rj to each line linking two arbitrary vertexesRi

andRj ;
(2) to match up the summation

∑
Ri

and the multiplier

M0
li
(Ri ) = Mli (CRi

) (3.5)

to each vertexRi with li lines entering it;
(3) to multiply the expression obtained in the previous steps by a combinatorical factor

K.

The expressions for the functionM0
l (R) with different l can be easily obtained by the

use of (3.5) and (3.3). Particularly, we have

M0
1(R) = PR

M0
2(R) = PR(1− PR)

M0
3(R) = PR(1− PR)(1− 2PR)

M0
4(R) = PR(1− PR)[1− 6PR(1− PR)].

(3.6)

In the context of the above described traditional diagram technique we assumed the
validity of the equalityWR=0 = 0, whereas within the formalism of section 2 (see (2.6)),
we have

WR=0 = µ (3.7)

whereµ is not generally (see (2.7)) equal to zero. Thus, within the scope of the present
study, one should take into account the diagrams in the cumulant expansion that have
loops, i.e. the lines for which both the beginning and the end belong to the same vertex.
For example, for the cumulant of the first order, we obtain

M1(X) = 〈X〉 = 1/2
∑
R1,R2

WR1−R2〈CR1CR2〉

= 1/2

[ ∑
R1 6=R2

WR1−R2〈CR1〉〈CR2〉 +
∑
R

WR=0〈C2
R〉
]
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= 1/2

[ ∑
R1,R2

WR1−R2〈CR1〉〈CR2〉 +
∑
R

WR=0(〈C2
R〉 − 〈CR〉2)

]
= 1/2

[ ∑
R1,R2

WR1−R2M
0
1(R1)M

0
1(R2)+

∑
R

WR=0M
0
2(R)

]
(3.8)

where the following relationship [27, 34, 37]

〈CR1CR2〉 = 〈CR1〉〈CR2〉 +O(1/N) R1 6= R2 (3.9)

was used. By means of the diagram technique rules described above, the expression (3.8)
may be written down in the following diagram form

M1(X) = + . (3.10)

It should be emphasized that, in the considered case, the diagram technique rules (1)–(3) still
stand even for the diagram with a loop, because the correspondence between the multiplier
WR=0 and the loop obviously follows from rule (1).

In the appendix, it is shown that the above-mentioned rules of the diagram technique
may be applied with no changes to any type of diagram containing loops, and the following
general expression for the combinatorical factorK corresponding to such diagrams is
derived:

K = S
[
(−kBT )

n−1p!
p∏

i>j=1

(mij !)
p∏
i=1

(ni !2
ni )

]−1

. (3.11)

In (3.11): n andp are the total numbers of lines and vertices in a diagram, respectively;
mij is the number of lines linking two different verticesi andj ; ni is the number of loops
corresponding to the vertexi; S is the number of nonequivalent ways of distribution ofp
unequal fixed indices through thep vertices of the diagram:

S = p!/t (3.12)

wheret is the number of elements of the topological symmetry group of a diagram.
It should be emphasized that there exists a unique linked irreducible diagram with loops,

namely

because any diagram (except this one) with a loop at some vertex may be transformed into
an unlinked diagram by cutting just at this vertex. Thus, taking into account the linked
irreducible diagrams only, in particular, we have

−M2(X)/(2kBT ) =

M3(X)/[6(kBT )
2] = (3.13)

−M4(X)/[24(kBT )
3] = .

4. Zero approximation

Brout [24–27] offered to choose the quantityz−1 as an expansion parameter in (3.1), where
z is the number of sites within the imaginary shell whose radius is equal to the effective
radius of atomic interactions. In the context of such an approach, the relative contribution
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of a diagram withn lines andp vertices to the cumulant expansion (3.1) is determined by
the value

Nz−(n+1−p).

Under such an estimation, the contribution of the unique linked irreducible diagram:

(for which p = n+ 1) is proportional to the least, zeroth power of the quantityz−1. Thus,
just this diagram mainly contributes to the cumulant expansion (3.1) atz → ∞ (i.e. at
a sufficiently large value of the effective radius of atomic interactions). Let us call the
approximation in which the contribution of this diagram alone is taken into account in
(3.1) the zero approximation. Within such an approximation, the expression for the grand
thermodynamic potential is the following

�zero= �0+ 1/2
∑
R1,R2

WR1−R2PR1PR2 − kBT ln10. (4.1)

In the case of the disordered state of alloy, when for anyR

PR = c = 〈NA〉/N (4.2)

the expression (4.1) has the following form

�zero|PR=c = �0+Nc2W̃k=0/2+NkBT [c ln c + (1− c) ln(1− c)] (4.3)

where

W̃k = Ṽk + µ (4.4)

and Ṽk is the Fourier transform of the mixing potentialVR:

Ṽk =
∑
R

VR exp(−ik ·R) VR = N−1
∑
q

Ṽq exp(iq ·R). (4.5)

In (4.5) and below, the summation onq is carried over all the points specified by the cyclic
boundary conditions in a corresponding first Brillouin zone.

5. Ring approximation

According to Brout’s classification, the contribution of the terms corresponding to linked
irreducible diagrams of the ring type (for whichp = n) is proportional to the first power
of the quantityz−1. Let us separate out the contribution1�ring corresponding to such
diagrams in the expansion (3.1):

1�ring = · · · .

By the use of the diagram technique rules described in section 3, we obtain

1�ring = 1

2

∞∑
n=0

[(−kBT )
n(n+ 1)]−1

∑
R1,R2,...,Rn+1

WR1−R2WR2−R3 . . .WRn+1−R1

×
n+1∏
i=1

PRi
(1− PRi

). (5.1)

Note that the following expression [25, 26]

Sring =
{

1 p = 1, 2

(p − 1)!/2 p > 2
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for the quantityS (the knowledge of which is necessary for calculation of the combinatorial
factorK (3.11)) was used in the derivation of (5.1).

Taking into account the contribution corresponding both to the diagram and to
the ring-type diagrams in the cumulant expansion, we have the following form for the
corresponding grand thermodynamic potential:

�ring = �zero+1�ring (5.2)

where�zero and1�ring are determined by the expressions (4.1) and (5.1), respectively. We
shall call this approximation ring one†.

In the case of the disordered state of an alloy (see (4.2)), the expression (5.1) can be
transformed as follows

1�ring|PR=c = kBT/2
∑
k

ln[1+ W̃kc(1− c)/(kBT )]. (5.3)

The expression analogous to (5.3) was first obtained by Brout [25–27] (see also [29, 39–43]).

6. Method of differentiation with respect to potential

There exist a number of methods for calculation of the Warren–Cowley short-range order
parametersαR [44, 45]

αR1−R2 = (〈CR1CR2〉|PR=c − c2)[c(1− c)]−1. (6.1)

The basic method used in the present study (see the next section) is the thermodynamic
fluctuation method. However, for the derivation of an equation in the quantityµ (required
for the calculation ofαR within the grand canonical ensemble), it is helpful first to apply the
other generally accepted method—the method of differentiation with respect to potential.
Within this method (see e.g. [1]), differentiating the general expression for the grand
thermodynamic potential (see (2.4) and (2.8)) with respect toWR1−R2, we obtain

αR1−R2 =
{
(2∂�/∂WR1−R2|PR=c − c2)[c(1− c)]−1 R1 6= R2

1 R1 = R2.
(6.2)

Within the zero approximation, substituting (4.3) into (6.2), we get

αR = 0 atR 6= 0. (6.3)

Thus, within the zero approximation, the method of differentiation with respect to potential
yields the absence of the interatomic correlations for all coordination shells (except the
‘zeroth’ one corresponding toR1 = R2).

Within the ring approximation, substituting (5.2) into (6.2), we obtain

αk = 1−N−1
∑
q

[1+W̃qc(1−c)/(kBT )]
−1+ [1+W̃kc(1−c)/(kBT )]

−1(6.4)

whereαk is the Fourier transform of the SRO parametersαR

αk =
∑
R

αR exp(−ik ·R) αR = N−1
∑
q

αq exp(iq ·R). (6.5)

The quantityµ must satisfy the relationships (2.15). Thus, substituting the expression (5.2)
into (2.15), we obtain the following equation for calculation ofµ

N−1
∑
q

[1+ W̃qc(1− c)/(kBT )]
−1 = 1. (6.6)

† Notice that within the framework of just the same approximation, the statistical–thermodynamic derivation of
the Debye theory for a system of electrically charged particles was performed [30, 38].
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By the use of (6.6), the expression (6.4) becomes

αk = [1+ W̃kc(1− c)/(kBT )]
−1. (6.7)

Thus, in the case of the disordered state of the alloy, within the ring approximation,
the method of differentiation with respect to potential leads to the well known expression
obtained within the spherical model [25–27, 42, 43, 46–51]. It should be emphasized that
the equation (6.6) for calculation ofµ was obtained here from the general thermodynamic
relationships (2.15) rather than from the requirementαR=0 = 1 (as in [27]), which is satisfied
for an arbitrary value ofµ (see (6.4)) within our consideration.

7. Thermodynamic fluctuation method within the zero-approximation

In the context of the thermodynamic fluctuation method [1–5, 31], let us expand the function
δPR = PR − c in the Fourier series

δPR =
∑
q

δPq exp(−iq ·R) (7.1)

and chooseδPq corresponding to differentq as independent fluctuations. Within the zero
approximation, substitutingPR = c+δPR into (4.1), introducing the Fourier transforms and
expanding the obtained expression in the series in powers ofδPq, we obtain the following
fluctuational change of the grand thermodynamic potential

δ�zero= NkBT
∑
q

[2c(1− c)βzero(q)]
−1|δPq|2 (7.2)

where all the terms that are proportional to the powers ofδPq greater than the second power
are neglected and

βzero(k) = [1+ W̃kc(1− c)/(kBT )]
−1. (7.3)

Taking into account that, in the context of thegrand canonical ensemble, the fluctuations
δPq corresponding to differentq are absolutely independent of one another (see section 1),
following the general formalism of the thermodynamic fluctuation method, we have:

〈δPk1δP
∗
k2
〉fluct = N−1c(1− c)δk1,k2βzero(k1) (7.4)

where δk1,k2 is the Kronecker delta and〈. . .〉fluct means the statistical average over the
Gaussian distribution of the probabilities of fluctuations [31]. In the case of the disordered
state of alloy, we have

αR1−R2 = [c(1− c)]−1(〈PR1PR2〉fluct− c2) = [c(1− c)]−1〈δPR1δPR2〉fluct R1 6= R2

(7.5)

taking into account that〈δP 2
R〉fluct determines the square dispersion of the fluctuating quantity

PR rather than the correlation function atR = 0.
Using (7.1)–(7.5), we obtain

αk = 1−N−1
∑
q

βzero(q)+ βzero(k). (7.6)

Taking into account (7.3), it becomes obvious that the expression (7.6) is identical to (6.4).
Thus, the application of the thermodynamic fluctuation method to�zero gives just the same
result as the application of the method of differentiation with respect to potential to�ring.
Nevertheless, although at the derivation of the expression (7.6), the fluctuation method
was applied to�zero, one should substitute�ring rather than�zero into (2.15) to obtain the
correct equation (6.6), which determines the value ofµ corresponding to (7.6), whereas the
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substitution of�zero into (2.15) leads to the incorrect equationc(1− c) = 0. Note that, in
terms of the functionβzero(k), the equation (6.6) has the following form

N−1
∑
k

βzero(k) = 1. (7.7)

Substituting (7.7) into (7.6), we obtain

αk = βzero(k). (7.8)

8. Thermodynamic fluctuation method within the ring approximation

Within the ring approximation, applying the thermodynamic fluctuation method to�ring

(5.2) in much the same way as in section 7, we obtain

αk = 1−N−1
∑
q

βring(q)+ βring(k) (8.1)

where

[βring(k)]
−1 = 1+ c(1− c)

kBT
W̃k − c(1− c)

kBT
N−1

×
∑
q

W̃q

[
1+ c(1− c)

kBT
W̃q

]−1

− c(1− c)(1− 2c)2

2(kBT )2
N−1

×
∑
q

W̃qW̃k−q

[
1+ c(1− c)

kBT
W̃q

]−1 [
1+ c(1− c)

kBT
W̃k−q

]−1

. (8.2)

Comparing (7.6) with (8.1), one can assume that, within the ring approximation, the equation
for calculation ofµ has the following form, similar to (7.7),

N−1
∑
k

βring(k) = 1. (8.3)

Substituting (8.3) into (8.1), we obtain

αk = βring(k). (8.4)

Notice that, most likely, the rigorous proof of the validity of (8.3) may be performed
by the calculation of the higher order additive1�′ to �ring that ensures the derivation of
the expression (8.3) within the method of differentiation with respect to potential and by
the subsequent substitution of�ring + 1�′ into (2.15). Unfortunately, we failed to obtain
the quantity1�′. However, as an indirect proof of the validity of (8.3), on the one hand,
one may accept the high numerical accuracy of the results obtained by the use of (8.4) in
[52]. On the other hand, both (8.3) and (8.4)continuouslytransform into the corresponding
expressions (7.7) and (7.8) (rigorously obtained within the zero approximation), when the
high-order corrections to�zero may be neglected. This is the case of sufficiently high
temperatures and/or of a long-range character of atomic interactions [52].

The expressions (8.3) and (8.4) can be presented in the following equivalent form [53]

αk = [I + W̃ eff
k c(1− c)/(kBT )]

−1

N−1
∑
q

[I + W̃ eff
q c(1− c)/(kBT )]

−1 = 1 (8.5)
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where

I = N−1
∑
q

[1+ W̃qc(1− c)/(kBT )]
−1

W̃ eff
k = W̃k − (1− 2c)2

2kBT
N−1

∑
q

W̃qW̃k−q

[
1+ c(1− c)

kBT
W̃q

]−1 [
1+ c(1− c)

kBT
W̃k−q

]−1

.

(8.6)

Notice that on the basis of the results obtained in this as well as in two previous sections,
one can conclude that the thermodynamic fluctuation method is preferable to the method
of differentiation with respect to potential at calculation of the SRO parameters. Really,
being applied within the same approximation, the fluctuation method yields the expression
for correlation function whose accuracy is higher than that of the differentiation method
(compare (6.3) with (7.8) and (6.7) with (8.4)).

9. High-temperature approximations

The classification of terms in the cumulant expansion (3.1) is possible not only by the
powers ofz−1 (see section 4) but also by the powers of(kBT )

−1 [34]. It is evident that at
sufficiently high temperatures, the terms that are proportional to the least powers of(kBT )

−1

mainly contribute to (3.1). The approximation derived taking into account only the terms
proportional to the powers of(kBT )

−1 less than or equal ton in the cumulant expansion
will be called the high-temperature approximation of thenth order. From (3.1), it follows
that any term corresponding to the cumulant of thenth order is proportional to(kBT )

n−1.
Therefore, to obtain the high-temperature approximation of thenth order, one should take
account of all cumulants up to the (n+ 1)th order inclusive.

Let us consider the high-temperature approximations of the zeroth, first and second
orders. From (3.1), it follows that the general expression for the grand thermodynamic
potential �(n)HT corresponding to the high-temperature approximation of thenth order
(n = 0, 1, 2) can be presented as follows

�
(n)
HT =

n∑
i=0

�(i) − kBT ln10 (9.1)

where

�(0) = �0+M1(X) = �0+ 1/2
∑
R1,R2

WR1−R2PR1PR2 +WR=0

∑
R

PR(1− PR)/2

= �0+Nµc/2+ 1/2
∑
R1,R2

VR1−R2PR1PR2

�(1) = −M2(X)/(2kBT ) = −1/(4kBT )
∑
R1,R2

(WR1−R2)
2PR1(1− PR1)PR2(1− PR2)

�(2) = M2(X)

6(kBT )2
= [12(kBT )

2]−1
∑
R1,R2

(WR1−R2)
3PR1(1− PR1)PR2(1− PR2) (9.2)

×(1− 2PR1)(1− 2PR2)+ [6(kBT )
2]−1

×
∑

R1,R2,R3

WR1−R2WR2−R3WR3−R1PR1(1− PR1)

×PR2(1− PR2)PR3(1− PR3).
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Note that the expressions (9.2) were obtained on the basis of the corresponding diagram
expressions (3.13) by the use of the diagram technique rules described in section 3.

It should be emphasized that the high-temperature approximation of the zeroth order
(n = 0 in (9.1)) corresponds to the well known mean-field approximation rather than the zero
approximation advanced in section 4. Settingµ = 0 in (9.1) atn = 1, 2, we arrive at the
corresponding expressions for the high-temperature approximations obtained by Badalyan
and Khachaturyan [3, 35, 54] in the context of the thermodynamic perturbation theory within
the canonical ensemble.

In the case of the disordered state of the alloy (see (4.2)), we have

�
(n)
HT|PR=c = N

{ n∑
i=0

ω(i) + kBT [c ln c + (1− c) ln(1− c)]
}

(9.3)

where

ω(0) = ν0− µB + c(µ+ cṼk=0)/2

ω(1) = −[c(1− c)]2N−1
∑
k

(W̃k)
2/(4kBT )

ω(2) = [6(kBT )
2]−1

{
[c(1− c)(1− 2c)]2N−2

∑
k1,k2

W̃k1W̃k2W̃k1+k2/2

+[c(1− c)]3N−1
∑
k

(W̃k)
3

}
.

(9.4)

Applying the thermodynamic fluctuation method to�(n)HT determined by (9.1) and (9.2),
in the same way as in sections 7, 8, we obtain the following expressions for the Fourier
transform of the SRO parameters within the high-temperature approximation of thenth
order (n = 0, 1, 2):

αk =
[

1+
n∑
i=0

W̃
(i)

k c(1− c)/(kBT )

]−1

N−1
∑
q

[
1+

n∑
i=0

W̃ (i)
q (1− c)/(kBT )

]−1

= 1

(9.5)

where

W̃
(0)
k = Ṽk

W̃
(1)
k = (kBT )

−1

{
c(1− c)N−1

∑
q

(W̃q)
2− (1− 2c)2

∑
q

W̃qW̃k−q/2
}

W̃
(2)
k = (kBT )

−2

{
c(1− c)(1− 2c)2

[
N−1

∑
q

(W̃q)
2W̃k−q −N−2

∑
q1,q2

W̃q1W̃q2W̃q1+q2

]
(9.6)

+[1− 6c(1− c)]2N−2
∑
q1,q2

W̃q1W̃q2W̃k−q1−q2/6

−[c(1− c)]2N−1
∑
q

(W̃q)
3

}
.

The expression corresponding to the high-temperature approximation of zeroth order (n = 0
in (9.5)) is identical to the Krivoglaz [1, 2, 7] approximation. In another particular case,
settingµ = 0 in (9.5) and (9.6) atn = 2, we arrive at the corresponding expression for
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the high-temperature approximation obtained by Semenovskaya [9] in the context of the
thermodynamic perturbation theory within thecanonical ensemble.

Note that, in the case of short-range interatomic potentials, the following easy to derive
expressions are helpful for the calculations of the integrals entering (9.4) and (9.6):

Np−1
∑

k1,k2,...,kp

W̃k1W̃k2 . . . W̃kp δk,
∑p

i=1 ki
=
∑
R

(WR)
p exp(−ik ·R) (9.7)

wherep = 2, 3, . . . .

10. Chain approximation

As already noted in section 4, Brout [24] proved that the contribution to the cumulant
expansion from the terms corresponding to unlinked and/or reducible diagrams is negligible
as compared to the contribution of the other terms. Alternatively, ignoring this statement
and using exclusively the Brout classification of terms in the cumulant expansion by the
powers ofz−1, one should conclude that the chain-type diagrams

(for which p = n+ 1 (see sections 3 and 4)) mainly contribute to the cumulant expansion
at large z, because they all are proportional to the least, zeroth power of the quantity
z−1. Thus, it is reasonable to obtain the expressions for the SRO parameters within the
corresponding chain approximation (taking into account only the chain-type diagrams in the
cumulant expansion) and to compare their numerical accuracy with that of the zero and ring
approximations. The first goal will be achieved below in this section, and the second one
in the second part of the present work [52].

Within the chain approximation, the expression for the grand thermodynamic potential
�chain can be presented in the following form

�chain= �0− kBT ln10 +1�chain (10.1)

where

1�chain= 1/2
∞∑
n=1

(−kBT )
−n+1×

∑
R1,R2,...,Rn+1

WR1−R2WR2−R3 . . .WRn−Rn+1PR1

×PR2(1− PR2)PR3(1− PR3) . . . PRn
(1− PRn

)PRn+1. (10.2)

Note that in (10.2), at the transition from the diagram form to the analytical one, the diagram
technique rules described in section 3 were used, taking account of the following equality

Schain= p!/2

obtained by means of (3.12). In the case of the disordered state of the alloy (see (4.2)), we
have

1�chain|PR=c = Nc2W̃k=0[1+ W̃k=0c(1− c)/(kBT )]
−1/2. (10.3)

Applying the thermodynamic fluctuation method to�chain, in the same way as in the
derivation of (9.5) and (9.6), we obtain the following expressions for calculation of the
Fourier transform of the SRO parameters

αk = [1+ W̃ eff
k c(1− c)/(kBT )]

−1

N−1
∑
q

[1+ W̃ eff
q c(1− c)/(kBT )]

−1 = 1 (10.4)
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where

W̃ eff
k =

W̃k + c2[(W̃k=0)
2+ W̃kW̃k=0(2+ cW̃k=0/(kBT ))]/(kBT )

[1+ W̃k=0c(1− c)/(kBT )]2[1+ W̃kc(1− c)/(kBT )]
. (10.5)

11. Low-concentration approximation

In the case of small concentrations, only the terms proportional to the lowest powers of
concentration mainly contribute into the cumulant expansion, and the quantityPR should
be chosen (see (4.2)) as a small parameter of expansion. According to the diagram
technique rules presented in section 3, the quantityPR enters the cumulant expansion
exclusively through the quantitiesM0

n(R). From (3.3) and (3.5), it follows that, for any
givenn = 1, 2, . . . , the expansion of the quantityM0

n(R) in the series in powers ofPR starts
with the first power. Therefore, taking into account that the multiplierM0

n(R) (with some
n = 1, 2, . . .) is matched up to every site of the diagram in the cumulant expansion, one
may conclude that the expansion of the analytical expression corresponding to an arbitrary
diagram withp sites in the series in powers ofPR begins with thepth power. Thus, to
derive the expression for the cumulant expansion with an accuracy of thepth power of the
quantitiesPR (p = 0, 1, . . .), one should take account of only the diagrams with the number
of sites no more thanp.

In particular, summing up the contributions from all linked irreducible diagrams with
one and two sites, we obtain the following expression for the grand thermodynamic potential
with an accuracy of the second power of the quantitiesPR

�LC = �0− kBT ln10 + (11.1)

where

(11.2)

and�0 and ln10 are determined in (2.9) and (2.12), respectively. According to the diagram
technique rules presented in section 3, we obtain (with an accuracy of the square ofPR)

= µ

2

∑
R

PR(1− PR)

= kBT/2
∑
R1,R2

PR1PR2[1− exp(−WR1−R2/(kBT ))].
(11.3)

Applying the thermodynamic fluctuation method to the expression (11.1), in the same
way as in sections 7 and 8, we obtain

αk = {1+ c(1− c)[1− exp(−µ/(kBT ))− µ/(kBT )+ f̃k]}−1

N−1
∑
q

αq = 1 (11.4)

where

f̃k =
∑
R

[1− exp(−VR/(kBT ))] exp(−ik ·R). (11.5)

It is notable that, passing in the expressions (11.1) and (11.4) to the case of the canonical
ensemble (i.e. settingµ = 0—see section 2), we arrive to the corresponding expressions
for the low-concentration approximation derived by Krivoglaz [1, 2, 7, 55].
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12. Conclusions

In the present work, in the framework of a modified thermodynamic perturbation theory
within the grand canonical ensemble, by the use of the thermodynamic fluctuation method,
in addition to the well known spherical model approximation, a number of new analytical
approximations for calculations of the grand thermodynamic potential as well as of the
SRO parameters and their Fourier transform in disordered binary alloys with a Bravais
crystal lattice were developed. An alloy was considered in the framework of the lattice
gas model with pair atomic interactions of an arbitrary effective radius of action, and the
inverse effective number of atoms interacting with one fixed atom, inverse temperature and
concentration of the impurity component were used as small parameters of expansion. It was
established that the thermodynamic fluctuation method permits us to obtain more accurate
results on the SRO parameters than the conventionally used method of differentiation with
respect to potential.

It seems to be important to reveal the temperature–concentration intervals of the correct
applicability of the developed approximations and to compare the numerical accuracies of
these approximations in the cases of actual alloys and the simplest model systems for which
the necessary information concerning atomic interactions is available. It is significant also
to ascertain what choice of small parameter of expansion in the thermodynamic perturbation
theory within the considered formalism is the best in respect to the rate of convergence of a
corresponding expansion. Both problems are solved in the second part of the present work
[52] (see also [56, 57]).

Notice that the approach advanced in the present work may be also used for the
derivation of subsequent approximations within the thermodynamic perturbation theory.
Besides, it seems to be advisable to extend this approach to the case of a multicomponent
alloy with a complex crystal lattice as well as to the case of an alloy with nonpair atomic
interactions [58, 59] and/or with a long-range order. Owing to the equivalence of the two-
component lattice gas and Ising models [27, 60], the obtained results may be also used in
research on magnetics. The absence ofa priori assumptions about the space dimensionality
of a crystal lattice in the developed formalism permits us readily to apply it in investigations
of low-dimensional lattice systems, as well. The approximations elaborated in the present
work may be also useful in the investigations of fluids and amorphous materials within the
framework of the lattice gas model.
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Appendix

To generalize the diagram technique rules as well as the expression for the combinatorical
factorK to the case of the presence of diagrams with loops in the cumulant expansion (see
section 3), let us consider the cumulantMn(X) of any given ordern. In the expression
(3.3) for such a cumulant, the term〈Xn〉 is always present and corresponds to the choice
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mi = δi,n for any i in the sum in (3.3). This term can be written in the following form

〈Xn〉 =
〈(

1/2
∑
R1,R2

WR1−R2CR1CR2

)n〉
=
〈(

1/2
N∑
i=1

N∑
j=1

WRi−Rj CRi
CRj

)n〉

=
〈( N∑

i>j=1

WRi−Rj CRi
CRj + 1/2

N∑
i=1

WR=0CRi

)n〉
(A.1)

where the summations are carried out over all sites of a crystal lattice numbered by
1, 2, . . . , N . Transforming (A.1) as follows

〈Xn〉 = n!
∑

{mij ,ni }=0(
n∑

i>j=1
mij+

n∑
i=1
ni=n

)
〈 N∏
i>j=1

[
(WRi−Rj CRi

CRj )
mij

mij !

] N∏
i=1

[
(WR=0CRi

)ni

2ni ni !

]〉
(A.2)

and, then, grouping together the terms that correspond to topologically equivalent diagrams,
we obtain

〈Xn〉 =
∑

Diagram

S

p!
n!

( N∏
i>j=1

[mij !]
N∏
i=1

[ni !2
ni ]

)−1

×
∑

R1 6=R2 6=···6=Rp

[∏
WRi−Rj

]〈∏
CRi

〉
(A.3)

where [∏
WRi−Rj

]
=

p∏
i>j=1

[WRi−Rj ]
mij

p∏
i=1

[WR=0]ni

〈∏
CRi

〉
=
〈 p∏
i>j=1

[CRi
CRj ]

mij

p∏
i=1

[CRi
]ni
〉
=
〈 p∏
i=1

(CRi
)li
〉
. (A.4)

In (A.3) and (A.4)
∑

Diagram means the summation over all topologically unequivalent
diagrams; the vertices of a diagram are numbered by 1, 2, . . . , p; the summations on the
vectorsR1, R2, . . . , Rp are carried out over allN crystal lattice sites;S is the number of
nonequivalent ways of distribution ofp unequal fixed indices through thep vertices of a
given diagram (see (3.12));mij is the number of lines linking two different verticesi and
j ; ni is the number of loops corresponding to the vertexi andli is the total number of lines
entering the vertexi.

Horwitz and Callen [36] proved that the transition in consideration

〈Xn〉 → Mn(X)

is equivalent to the simultaneous performance of the two following changes〈 p∏
i=1

(CRi
)li
〉
→

p∏
i=1

M0
li
(Ri )

∑
R1 6=R2 6=···6=Rp

→
∑

R1,R2,...,Rp

.

Performing these changes in (A.3) and (A.4) we obtain

Mn(X) =
∑

Diagram

K̃
∑

R1,R2,...,Rp

p∏
i>j=1

[WRi−Rj ]
mij

p∏
i=1

[(WR=0)
niM0

li
(Ri )] (A.5)
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where

K̃ = S

p!
n!

( N∏
i>j=1

[mij !]
N∏
i=1

[ni !2
ni ]

)−1

. (A.6)

Taking into account thatMn(X) enters the expansion (3.1) with the corresponding
coefficient, we have

K = K̃(−kBT )
1−n/n! (A.7)

from where, by the use of (A.6), we arrive at the desired expression (3.11).
From the expression (A.5), it follows that the diagram technique rules quoted in section 3

still stand in the case of the presence of diagrams with loops in a diagram expansion, as
long as the expression (3.11) is used for calculation of the combinatorical factorK. Note
that the expression (3.11) is also valid for diagrams without loops, i.e. whenni = 0 for any
i = 1, 2, . . . , p.
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